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Abstract
In this work we study the influence of a cosmic string on the classical and
quantum dynamics of an electric dipole. We find the Lagrangian and the
classical scattering. The Schrödinger equation for this problem is also solved
and the quantum scattering is determined.

PACS numbers: 11.27.+d, 03.50.-z, 04.20.-q

1. Introduction

The quantum dynamics of a single particle in a conical space-time has been investigated by
several authors. Deser and Jackiw [1] investigated the classical and quantum non-relativistic
dynamics of a particle in a (2 + 1)-dimensional conical space-time. This problem was also
investigated by ’t Hooft [2]. In a recent article the influence of conical singularities in the
energy levels of a harmonic oscillator was investigated [3].

It is well known that a charged particle in a conical space-time experiences a self-force of
topological origin [4–7]. In this case the topology induces an effective interaction through the
deformation of the Coulomb field. Gibbons et al [8] investigated the quantum dynamics of a
charged particle in the presence of a cosmic string, considering the self-force in the dynamics.
The condensed matter analogue of this problem was solved by Furtado and Moraes [9].

Using a curved space approach Azevedo and Moraes [10] recently obtained explicitly the
scattering amplitude and total cross section for the quantum scattering by disclinations in a
graphite sheet. This kind of model can provide an interesting way to investigate geometrical
and topological effects.

In this paper we investigate the quantum and classical dynamics of a single electric dipole
in a (2 + 1)-dimensional conical space-time. We introduce in the dynamics the self-force
experienced by the dipole. The self-interaction is treated using the approach of Grats and
Garcia [11], in which they considered the context of classical field theory, and obtained the
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topological self-energy of a point electric dipole in (2 + 1)-dimensional conical space-time.
Initially, we determine the Lagrangian of the problem, solve the Euler–Lagrange equations
and find the trajectories. We shall treat the scattering of a dipole in the field of a disclination
as a stationary point mass. We write the Schrödinger equation in this background, obtain the
wavefunction and analyse the quantum scattering problem in Adhikari’s approach [12].

2. Classical scattering

In recent works about the space-time produced by an infinite straight cosmic string, Linet and
Smith [4, 5] have shown that a charged point particle becomes subject to a finite repulsive
electric self-force. The particle feels a distortion in its field which is produced by the global
properties of space. De Mello et al [7] have also determined the self-energy of a linear charge
distribution in the same space-time and analysed the presence of magnetic and electric linear
sources. Souraeep and Sahni [6] have calculated the Green function in a two-dimensional
conical space-time. In condensed matter physics, Azevedo et al [13] have studied a model to
describe charge localization around a disclination in mono-layer graphite. In this paper we
discuss the topological self-energy for a point electric dipole in the presence of a cosmic string.
For simplicity we study the problem in a z = constant section of space. This dipole is placed
in a conical space which can be described from a geometrical point of view. The line element
in the section z = constant is given by the metric

ds2 = −dt2 + dρ2 +
ρ2

p2
dθ2 (1)

in polar coordinates. In the metric above, we have that ρ � 0 is measured from the top of the
cone. The angular range is 0 � θ � 2π and gives its angular position around the singularity.
The parameter p is related to the linear mass density µ of the cosmic string by p−1 = 1–4 Gµ.
However, in the cosmic string context p > 1, in solids it can also assume values less than 1.
This metric has a cone-like singularity at ρ = 0. In other words, the curvature tensor of the
metric (1), considered as a distribution, is of the form

R12
12 = 2π(p2 − 1)δ(2)(ρ). (2)

Now we are going to determine the topological contribution to the self-energy. For this we
follow Grats and Garcia [11]. They showed how to find the topological self-energy for a point
dipole in the presence of a cone. The total energy of the system is obtained by summing the
self-energies of the two charges and taking the coincidence limit, which results in

Ut = −2(�n · �d)(�n · �D)− ( �d · �D)
ρ2

(3)

for the self-energy of the dipole. Here,

�D = − (p
2 − 1)

48π
�d (4)

where �d is the dipole moment. The vector �n is a unit Cartesian vector directed outward from
the singularity. It means that the topological self-energy for a point dipole can be written as

Ut =
(
p2 − 1

48π

)
d2 cos(2φ)

ρ2
(5)

where φ is the angle between the dipole direction and the normal vector from the singularity.
From the above expression we observe that both states of minimal energy are stable.

Any little deflection from equilibrium leads to a non-vanishing force moment which tends to
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decrease the deflection. The self-energy produces a minimal force when the dipole momentum
is oriented in the perpendicular direction to the straight line connecting the top of the cone and
the point where the dipole is placed.

In classical mechanics we have the following Lagrangian:

L = µ

2
ṙ igij ṙ

j − U. (6)

Substituting the topological self-energy and the kinetic energy into equation (6), we get

L = µ

2

[
ρ̇2 +

ρ2

p2
θ̇2

]
+
I

2
φ̇2 − (p2 − 1)

48πρ2
d2 cos(2φ) (7)

where I is the dipole’s momentum of inertia. The classical Lagrange equations of motion, in
this case, are given by

µρ̈ = µρ
θ̇2

p2
+
(p2 − 1)

24πρ3
d2 cos(2φ) (8)

d

dt

[
µρ2θ̇

p2

]
= 0 (9)

ρ2φ̈ = (p2 − 1)

24πI
d2 sin(2φ). (10)

Note that we have a coupling between the variables. Therefore we cannot use the separation
of variables method to solve these equations. Our development will take into account a
particular position in which we have a minimum for the potential energy. The angular position
corresponding to this situation is φ = π

2 . Choosing this, we have a simplification, and as a
consequence, the equations of motion turn into

d

dt

(
µρ2θ̇

p2

)
= 0 (11)

and

µ
dρ̇

dt
= µθ̇2

p2
ρ − (p2 − 1)d2

24πρ3
. (12)

Equation (11) gives

θ̇ = mp2

µρ2
(13)

where m is an integration constant. The radial equation is given by

d2ρ

dt2
−

(
m2

µ2
− (p2 − 1)d2

24πµ

)
1

ρ3
= 0. (14)

Defining

B ≡ −
[
m2

µ2
− (p2 − 1)d2

24πµ

]
(15)

and performing some manipulations, we find

ρ̇2 +
B

ρ2
= E (16)

whereE is a constant which can be related to the total energy of this system. From equation (16)
we obtain the following result:

ρ2 = B

E
+ (t − t0)2 (17)
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which can be rewritten as

ρ2 = m2

Eµ2
− (p2 − 1)d2

24πEµ
+ E(t − t0)2. (18)

For the angular dependence, we have

θ − θ0 = (mp2)

(Eµ)

1

χ
arctan

[
t − t0
χ

]
(19)

where χ is given by

χ2 = m2

E2µ
− (p2 − 1)d2

24πµE2
. (20)

Note that the classical scattering angle is obtained from the expression

ω = θout − θin − π. (21)

If we consider the particle moving from t = −∞ to +∞, the scattering angle will have the
value

ω = π

[
p2

[1 − (p2−1
24π )d

2 µm2]
1
2

− 1

]
. (22)

We note that if there is no dipole, we will re-obtain the result of Deser and Jackiw [1], and
when the parameter p assumes the value 1 we have the flat space (no defect). Therefore we
have no scattering due to the fact that in this case we have a locally and globally flat space-time.

3. The Schrödinger equation and quantum scattering

Now let us analyse the quantum behaviour of an electrical dipole in conical space. We are
interested in solving the wave equation that describes the quantum dynamics of this system.
We obtain the Schrödinger equation for this problem and look for its analytical solutions.
Starting with the solution, we can analyse the quantum scattering. We will discuss the dipole
behaviour in the presence of a conical singularity in two dimensions. We construct the kinetic
operator from the symmetric metric tensor using the Laplace–Beltrami operator. The metric
is given by (see equation (1))

gµν =
[

1 0
0 p2

ρ2

]
. (23)

The Hamiltonian is

H = − h̄
2

2µ
∇2

LB + V (ρ) (24)

where ∇2
LB is the Laplace–Beltrami operator and is given by the expression

∇2
LB = 1

ρ

∂

∂ρ
ρ
∂

∂ρ
+
p2

ρ2

∂2

∂θ2
(25)

and the interaction is the same as before:

V (ρ) = (p2 − 1)

48π

d2

ρ2
. (26)

The Schrödinger equation reduces to

1

ρ
∂ρ(ρ∂ρ$(ρ, θ)) +

p2

ρ2

∂2

∂θ2
+

[
2µE

h̄2 − (p2 − 1)

48π

d2

ρ2

]
$(ρ, θ) = 0. (27)



Dipole dynamics in the presence of a cosmic string 6123

We assume rotational symmetry and solve the above equation using the following ansatz:

$(ρ, θ) = F(ρ)eilθ (28)

where l is the orbital angular-momentum quantum number. Then, the equation for the radial
coordinate is given by

d2F (ρ)

dρ2
+

1

ρ

dF (ρ)

dρ
+

{
2µE

h̄2 − [l2p2 + (p2−1)
48π d

2]

ρ2

}
F(ρ) = 0. (29)

Defining

ν2 = l2p2 +
(p2 − 1)

48π
d2 (30)

and

k2 = 2µE

h̄2 (31)

we identify equation (29) as a Bessel equation, whose solution is

F(ρ) = AlJν(kρ) + BlNν(kρ) (32)

where we have two arbitrary constants and Jν(kρ) is the standard Bessel function and Nν(kρ)
is the Neumann function. Imposing the regularity condition at the origin, we have to take Bl
equal to zero.

In order to analyse the scattering problem we are going to use the standard decomposition
of the wavefunction into the incident wave and the scattered wave. As concerning the problem
of quantum scattering on a cone, there are two possibilities to choose an incoming state [8].
In what follows we will choose the incoming state as

$in(ρ, θ) = eikρ cos θ (33)

which is compatible with the system of coordinates which we are using in this paper. Therefore,
we can write the wavefunction in terms of the incident and scattered waves as

$(ρ, θ) → eikρ cos θ +$sc(ρ, θ). (34)

Using the expansion

eikρ cos θ =
∞∑

l=−∞
ilJl(kρ)e

ilθ (35)

and the asymptotic expansion for Jl , we find that

$(ρ, θ) →
∞∑

l=−∞
il

(
2

πkρ

)1
2

eilθ cos

[
kρ −

(
|ν| +

1

2

)
π

2

]
+

(
i

kρ

)1
2

f (θ)eiρ. (36)

Therefore, the scattering amplitude is given by

f (θ) =
∞∑

l=−∞

(
2

π

)1
2

eilθei π2 (l−ν) sin
[π

2
(l − ν)

]
. (37)

If we intend to compare this with the optical theorem we need

Im [f (θ = 0)] = Im

{ ∞∑
l=−∞

(
2

π

)1
2

ei π2 (l−ν) sin

[
π

2
(l − ν)

]}
(38)
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then we have

Im [f (0)] =
∞∑

l=−∞

(
2

π

)1
2

sin2
[π

2
(l − ν)

]
. (39)

Evaluating the cross section from

σ =
∫ 2π

0

σ(θ)

p
dθ (40)

we get

σ = 4

kp

∞∑
l=−∞

sin2
[π

2
(l − ν)

]
. (41)

Expanding the square root in equation (30) and obtaining its first and second terms, we have

ν ∼= lp

[
1 +

(p2 − 1)d2

96πl2p2

]
. (42)

Using this result our equation turns into

f (θ) =
∞∑

l=−∞

(
2

π

)1
2

eilθ+δl sin δl (43)

where the phase shift δl is given by

δl = π

2

[
l(1 − p)− (p2 − 1)d2

96πlp

]
. (44)

Therefore the cross section is

σ = 4

kp

∞∑
l=−∞

sin2

{
π

2

[
l(1 − p)− (p2 − 1)d2

96πlp

]}
(45)

and

Im (f (0)) =
∞∑

l=−∞

(
2

π

)1
2

sin2

{
π

2

[
l(1 − p)− (p2 − 1)d2

96πlp

]}
. (46)

Note from above expressions (45), (46) that we verify the optical theorem in Adhikari’s
approach [12].

4. Concluding remarks

In this work, we have analysed how to treat an electric dipole in the conical space-time of a
cosmic string, which has a analogue in condensed matter physics, a medium with a disclination.
We found the equations of motion from the Lagrangian and observed that our equations are
coupled. We found analytical solutions in the classical and quantum approaches. We have
shown that if the parameter p is different from unity, we will have classical scattering. We
have also found the scattering amplitude in the quantum case and verified the optical theorem,
where the imaginary part of the amplitude was related to the total cross section.
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